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SUMMARY

Body conforming orthogonal grids were generated using a fast hyperbolic method for aerofoils, and were
used to solve the Navier–Stokes equation in the generalized orthogonal system for the first time for time
accurate simulation of incompressible flow. For grid generation, the Beltrami equation and the definition
equation for the orthogonality are solved using a finite difference method. The grids generated around
aerofoils by this method have better orthogonality than the results published by earlier investigators. The
Navier–Stokes equation at Reynolds numbers of 3000 and 35000 for NACA 0012 and NACA 0015
respectively, have been solved as an application. The obtained results match quite well with the
corresponding experimental results. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the primary activities in computational fluid dynamics is obtaining a suitable grid for
the solution of the governing differential equation. In the present study, our concern is with
orthogonal structured grid generation in two dimensions. The literature in the area of
structured grid generation is extensive and some of the major efforts are given by Fletcher [1],
Thompson et al. [2] and Eiseman [3]. Any effective grid generation strategy requires

1. good control over grid spacing to resolve all the relevant length scale of the physical
problem, and

2. lower numerical error associated with grid generation with little computational effort.

Orthogonal grids may be preferred for the following reasons:

1. simpler transformed equations and their differenced form,
2. accurate and easy implementation of boundary conditions,
3. smaller numerical errors of the solution for governing differential equations by faster

methods. The accuracy and speed of methods could be due to the mapping, as seen in the
present case.

Orthogonal grids is the optimum choice between complete non-orthogonal grids and
conformal mapping. Orthogonal grids have been produced by solving either elliptic partial
differential equations [4–6] or hyperbolic differential equations [7,9–11].
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Ryskin and Leal [4], Duraiswami and Prosperetti [5] and Eca [6] have solved the covari-
ant Laplace equations,
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for transformation from the physical (x, y) plane to the mapped (j, h) plane. In the above
equation, f is the distortion function, given by
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. (2)

In Ryskin and Leal [4], f distribution was interpolated as a bivariate distribution;
Duraiswami and Prosperetti [5] used a specific method of obtaining a class of f functions,
where it is expressed as a product of two independent functions of the transformed co-
ordinates with conditions imposed on them for proper grid generation. However, a general
distortion function (as used here) according to these authors is highly desirable to achie6e
a more localized control on the density of co-ordinate lines. For the specific class of f,
the generated grids in Reference [5] for aerofoils have better orthogonal property than
other cited references—excepting the present results. Eca [6] used a procedure to iteratively
obtain f along with the main grid generation iteration for the resultant non-linear system,
a procedure that was used earlier in Reference [8]. The disadvantage of the methods
used by Ryskin and Leal [5] and the strong constraint method of Duraiswami and
Prosperetti [4] is that the grid point distribution on the defining boundaries is made
to change as part of the iterative method. In the weak constraint method [4,6,8] the grids
are generated with fixed boundary points. Note that the Equation (1) is obtained by
utilising the definition of the distortion function (Equation (2)) and the orthogonality
constraint

g12=xjxh+yjyh=0. (3)

It has been pointed out in References [5,8] that any solution of Equation (1) alone does
not necessarily satisfy the orthogonality condition given by Equation (3).

The hyperbolic methods in this context are superior in producing orthogonal grids be-
cause they use Equation (3) as one of the governing grid generation differential equations.
In general, hyperbolic methods are attractive for external flow problems where the shape of
the outer boundary is not a constraint. However, they have also been successfully imple-
mented for internal flow problems [10,11] by relaxing orthogonality.

In the present method, Equation (3) along with one of the Beltrami equations as given in
Equation (7) in the next section (referred to as generalized Cauchy–Riemann equation in
Reference [4]) are solved with the arc length in the normal direction prescribed. This
method of using constant arc length is similar to the suggestion of Dwyer [12], to overcome
the problem of grid shock formation in hyperbolic grid generation over strong concave
surfaces. In Reference [9] the finite difference method was compared with a spectral method
of solving the Beltrami equation, and was found to be superior with better orthogonal
properties.

The essential ideas for grid generation are given in the next section. In Section 3, the
results and discussion are presented for the grid generation procedure. The produced grids
have been used for solving the two-dimensional incompressible unsteady Navier–Stokes
equation and the computational results are compared with experimental results.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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Figure 1. The physical and computational domains for the O-type grid.

Figure 2. Grid generated around NACA 0015 aerofoil. Only the first 101 h-lines are shown. There are 233 points on
the aerofoil surface.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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Figure 3. The f distribution in the (j, h) plane. Note the strong dependence of f on (j, h) near the trailing edge only.

2. FORMULATION

The general mapping in two dimensions is given by

j=j(x, y), h=h(x, y). (4)

The metrics of the transformation is given by

g=
)g11

g21

g12

g22

)
, (5)

where
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The scale factors of the transformation are given by

hij=
gij. (6)

The orthogonality condition given by Equation (3) can be combined with the definition of
the Jacobian to yield the Beltrami equation

xh= fyj, yh= − fxj. (7)

It is easy to see that Equation (1) follows straight from Equation (7) upon eliminating x and
y, respectively.

In the present exercise O-type grids are produced using the finite difference method. Here,
Equation (3) and either part of Equation (7) are solved along with the prescribed arc length in
the hyperbolic direction by taking the following steps:

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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1. The points on the body are distributed along h=0 line which fixes the scale factor h11

distribution on this line.
2. The grid line increment DSh in the h-direction is prescribed and this fixes the other scale

factor h22, given by

h22=
DSh

Dh
. (8)

Thus, the distortion function f can be evaluated on h=0 line.
3. Equation (3) and either part of Equation (7) are then integrated by one step. This produces

(x, y) co-ordinates of the h=Dh line.
4. Steps (1)–(3) are repeated to obtain the grid lines.

The present procedure for the evaluation of f not only makes the grid generation process
very fast, it also gives a rational basis for the choice of the function f. Unlike previous studies
[6,8], this process of fixing the distortion function makes the governing grid generation
equations linear and hence the grid generation process is very fast. Furthermore, the ability to
prescribe the grid line spacing in the normal direction is a very useful feature of the generated
grids for viscous flow calculations.

3. RESULTS AND DISCUSSION

The above mentioned method has been implemented on various aerofoils. In Figure 1 the
physical and computational plane are illustrated. For a typical O-type grid the physical body
is represented as ABC, where the cuts AF and CD are introduced starting from the trailing
edge so that the computational domain is connected simply. Dirichlet conditions are prescribed

Figure 4. Grid generated around NACA 23018 aerofoil. Only the first 101 h-lines are shown. There are 229 points on
the aerofoil surface.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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Figure 5. (a) Comparison between experimental (Reference [13], also M. Coutanceau, private communication) and
computational results at t=1.0 for NACA 0012 at Re=3000 and a=30°. The computations are done on a 233×301
grid. (b) Comparison between experimental (Reference [13], also M. Coutanceau, private communication) and
computational results at t=2.25 for NACA 0012 at Re=3000 and a=30°. The computations are done on a
233×301 grid. (c) Comparison between experimental (Reference [13], also M. Coutanceau, private communication)
and computational results at t=3.25 for NACA 0012 at Re=3000 and a=30°. The computations are done on a

233×301 grid.

on ABC and the grid spacing in the wake of the aerofoil is achieved by distributing points on
the cuts AD and CF. The first grid line is located as close as 0.00001 chord of the aerofoil. The
successive grid lines are expanded smoothly by increasing the spacing by a constant value.

The first 100 lines in the hyperbolic direction of the grid generated for NACA 0015 are
shown in Figure 2. The slope discontinuity at the trailing edge is avoided by fitting a parabola
in the open trailing edge, with continuous slope everywhere. There are 233 points in the
j-direction, 301 lines in the h-direction, and the outer boundary is 14.76 chords away. The
included angle between the constant j- and h-lines are virtually orthogonal everywhere except
at three points along the second h-line, where the worst departure from the orthogonality is
given by the included angle of 89.476°. The included angle is calculated from

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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u=cos−1� g12

h11h22

n
. (9)

In calculating the metrics, second-order central differences are used wherever possible. The
major advantage of the present method is that the addition and deletion of points only have
local effects. The orthogonality property of the generated grid is better than the earlier efforts
[7,5,6]. For a cambered turbine blade, Steger and Chaussee [7] have reported the worst
non-orthogonality as :20%; Duraiswami and Prosperetti [5] reported 1.11° as the maximum
departure from orthogonality and Eca [6] reports this as 4.41° for the NACA 0015 aerofoil. It
is clear that these grids cannot be used as they are to solve the Navier–Stokes equation written
in the orthogonal co-ordinate system. In Figure 3 the distortion function has been plotted as
a function of h and j for NACA 0012. This figure shows that the present method uses f, which
is quite different than the analytic expression used in Reference [5]. In fact, the local control
of grid lines as seen in the present method precludes such simple representation of f. Although
f depends strongly on j and h near the trailing edge, later on it is a weak function of h.

Figure 5 (Continued)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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Figure 5 (Continued)

The grid for a thicker (18%) aerofoil with camber (NACA 23018) is shown in Figure 4. The
first 101 h-lines of the generated grids of size (229×301) are shown and the effect of the large
camber on generated grids produces grid clustering on the lower side near leading edge, due to
the shape of the camber line. The worst non-orthogonality here is obtained near the trailing
edge with a value of u=89.33°. Once again, the open trailing is closed by an analytic curve
affecting only the last 0.01% of the chord near the trailing edge.

The grid generated around NACA 0015 has also been used in computing the Navier–Stokes
equation. In this case, the worst non-orthogonality is given by u=89.526°. This value is the
best in comparison with published results. In Reference [5] this value has been reported as
u=88.89°, while Reference [6] gives a value of u=85.59°.

To show the application of the grids generated, they were used to investigate the flow field
past an impulsively started NACA 0012 aerofoil at Re=3000 and at an angle of attack of 30°,
and NACA 0015 aerofoil at Re=35000 and at an angle of attack of 30°. The Reynolds
number is based on the chord of the aerofoil and the free-stream speed. The present objective

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 215–224 (1998)
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is to show the effectiveness of the grid generation technique, therefore the results presented
here are for the early times where computed results are compared with sequence of flow
streamlines as obtained experimentally by Ohmi et al. [13] and Morikawa and Gronig [14]. The
additional figures included for the case of Re=3000 and a=30° were provided by Coutanceau
(private communication).

The effectiveness of the grid generation method is shown by solving the Navier–Stokes
equation in streamfunction–vorticity formulation. The streamfunction–vorticity equation is
solved for the orthogonal grids and is given by

(

(j

�h22

h11

(c

(j

�
+
(

(h

�h11

h22

(c

(h

�
= −h11h22v, (10)

Figure 6. Comparison between experimental [14] and computational results at t=2.9037 for NACA 0015 at
Re=35000 and a=30°. The computations are done on a 233×301 grid.
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For the results shown in Figure 5(a–c) up to t=3.25, a third-order upwind scheme was used
for the convective terms of the vorticity transport equations (11). The diffusion terms are
discretized using second-order central differencing.

The plots show that the computed results match quite well with the experimental results
showing the large vortical structures. The present method of solving the Navier–Stokes
equation is accurate due to the higher-order upwinding method used.

Next, some results for the NACA 0015 aerofoil at Re=35000 are shown, for which
Morikawa and Gronig [14] have given some experimental and computational results. The
aerofoil in the tunnel was started with constant initial acceleration up to a non-dimensional
time of 0.598, compared with the case of Ohmi et al. [13], where the experiment was started
almost impulsively. The experimental arrangement for Ohmi et al. [13] gives this start-up
non-dimensional time at around 0.1, depending on the size of the model. The detailed
comparison of results for the impulsive start and accelerated start will be reported elsewhere.
Only the result in Figure 6 for the impulsively started NACA 0015 aerofoil at Re=35000 at
a=30° is shown here.
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